Высокоскоростные сети
Страница 34

Он добавил, что несмотря на то, что некоторые проблемы качества услуг можно разрешить в рамках таких стандартов, как IEEE 802.1p (для описания полей пакетов для задания различных уровней приоритетов) или RSVP (для запроса у маршрутизатора требуемых ресурсов), они все же не решают всех проблем. «Мне часто приходится разговаривать с администраторами сетей, но они затрудняются ответить, сколько они готовы потратить на управление пропускной способностью в локальной сети, — рассказывает Руби. — Они могут расходовать немало средств на каналы глобальных сетей, но к локальным сетям это не имеет отношения». По этой причине качество услуг не обеспечивается даже в тех территориальных сетях, где используется ATM —все данные там доставляются по мере возможности. Качество услуг предоставляется обычно на границе сети — между локальной и глобальной сетью.

Существующие протоколы обеспечения QoS критикуют за то, что они (в частности, протокол RSVP) недостаточно хорошо масштабируются для мультимегабитной Ethernet. Вместе с тем Руби считает, что масштабирование — не проблема. Проблема заключается в том, как заставить приложения сообщать сети требования к пропускной способности и задержке при передаче. «Приложения не понимают требований к пропускной способности и задержке и ничего не знают о реальных возможностях сети, — говорит Руби. —Большинство администраторов сетей, которых я знаю, с большой настороженностью относятся к тому, что приложения должны будут обращаться к сети с запросами по поводу необходимых ресурсов».

Такие протоколы, как RSVP, IEEE 802.1p и 802.1Q (еще один метод задания меток пакетов в соответствии с приоритетом), позволяют в определенных ситуациях максимально эффективно использовать имеющуюся пропускную способность, но Руби также является сторонником управления сетью в соответствии с правилами. Данная концепция, привлекающая к себе сегодня немало внимания, позволяет сделать сеть интеллектуальнее — она будет больше знать о типе передаваемого трафика и о том, куда направляются данные. Руби говорит, что за счет применения элементов управления, определения пользователей, групп приложений и сетевых объектов, контроля за использованием ими сетевых ресурсов имеющейся пропускной способности будет достаточно для большинства клиентов. «Я убежден, что для решения в кратчайшие сроки проблемы пропускной способности нам нужно вернуться назад к вопросам качества услуг, рассмотрев их с точки зрения администраторов сетей», — полагает Руби.

ЧЕГО НАМ ЖДАТЬ?

Итак, для перехода к мультимегабитным сетям Ethernet еще предстоит решить немало проблем. Хотя исследования и разработки различных аспектов данной технологии уже начались, до появления конечного продукта нужно пройти немалый путь. Теперь, когда IEEE ратифицировал стандарт 802.3z, мы можем ожидать, что вскоре кто-нибудь предложит создать еще одну рабочую группу для разработки Ethernet следующего поколения.

Когда отрасль будет иметь лучшее представление о потенциальных способах использования мультимегабитных сетей Ethernet и о препятствиях на пути к их созданию, приверженцы Ethernet (даже при появлении более быстрых и привлекательных технологий) получат еще одну новую возможность.

Небольшая задержка

С переходом технологии Ethernet к скоростям 100 Мбит/с и 1 Гбит/с разработчики столкнулись с тем, что импульсы лазерного света проходят по многомодовому оптическому волокну по разным маршрутам. Часть из них следует по прямой вдоль центральной оси оптического волокна, другие же на своем пути отражаются от поверхности волокна. Чем большее расстояние проходит импульс, тем сильнее он размазывается, поскольку для одних импульсов маршрут оказывается короче, чем для других.

Это явление, получившее название дифференциальной задержки моды (Differential Mode Delay, DMD), затрудняет прием импульсов на другом конце кабеля (приемнику труднее их различить). На больших скоростях передачи данных проблема DMD, характерная для многомодового волоконно-оптического кабеля из-за его способности поддерживать несколько мод, становится еще более острой.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36